

BRA99G32 Brasilien Fuel Cell Hybrid Bus

Monica Saraiva Panik (Guido Bunzel)

Nabern – the technology center for Fuel Cell Systems. Since 1997, all activities for the development of Fuel Cell Systems have been concentrated at the Nabern location near Kirchheim-Teck.

■ 13/7/2009 **■** 2

13/7/2009

Company position on the market, products and activities

NuCellSys GmbH - The Fuel Cell System Company - is a 100% Daimler AG company is the worldwide leader in the development and manufacturing of fuel cell systems for automotive applications. Within the Fuel Cell Alliance between Daimler, Ford, and AFCC (Automotive Fuel Cell Cooperation), NuCellSys is responsible for system engineering and design, component and software development, system testing, manufacturing, integration and validation.

History

Major milestones of the Company's history

Daimler-Benz and Ballard started initial co-operations in the early 90's and in:

Início da Aliança em prol do Deservolvimento da Célula a Combustivel. 	1996	 Start of the Fuel Cell Alliance. 		
Os parceiros fundaram a empresa 'dbb fuel cell • engines' para o desenvolvimento de sistemas completos de célula a combustivel.	1997	 The partners found the company 'dbb fuel cell engines' for the development of complete Fuel Cell Systems. 		
Ford Motor Company se junta a Aliança. 🔹	1998	Ford Motor Company joins the Alliance.		
dbb muda de nome para 'XCELLSIS A Empresa de . Sistemas de Célula a Combustivel'	1999	 dbb changes its name to 'XCELLSIS - The Fuel Cell Engine Company'. 		
Integração dentro da empresa Ballard Power Systems . devido à uma re-estruturação da Aliança.	2001	 Integration into Ballard Power Systems in the course of an Alifance restructoring. 		
Daimler e Ford fazem uma joint-venture e assumem o negócio de desenvolvimento de sistemas de célula a combustivel fundando a 'NuCellSys GmbH A Empresa de Sistemas de Célula a Combustivel'.	2005	 Daimler and Ford take over the system business and found 'NuCellSys GmbH - The Fuel Cell System Company' as a joint venture. 		
Daimler e Ford fazem uma nova joint-venture e • assumem a Divisão de Stack da Ballard Power Systems fundando a AFCC. Cooperação de Célula a Combustivel Automotiva.		 Daimler and Ford take over the Automotive stack Division business from Ballard Power Systems and found AFCC - Automotive Fuel Cell Cooperation as a joint venture. 		
Daimler assume 100% da Nucellsys •	2009	 Daimier take over the 100% share in Nucellsys. 		

NuCellSys Achievements in mobile applications

■ 13/7/2009 I ■ 6 ► ►I

Project Organisation & Communication (Workpackage 3.1)

■ 13/7/2009 **■** 7 **▶**

Work Break Down Structure

Work Package Responsibility (NuCellSys)

9 13/7/2009

FCS-Documenation

Packaging FCS

Service/Maintenance

support - training

Data for

CAD Packaging

Wiring FCS to Vehicle

Fuel Cell Stack Modules

3.1.3.7

3.1.3.8

3.1.3.9

3.1.1.10

3.1.3.11

3.1.3.12

3.1.2.7

3.1.2.8

3.1.2.9

System architecture and scope of work for WP3.1

13/7/2009

Fuel Cell System Interface clarification

■ 13/7/2009 I ■ 12 ► ► I

100.00

Drive Cycle Generation

The EMTU Corridor profile was taken to generate a drive cycle with the bus stops. With a simulation tool, the requirements of the designed hybrid system was verified

Sao Paulo Corridor

13/7/2009

Bus Rear Packaging of the Fuel Cell Hybrid components

■ 13/7/2009 ■ 14 ■ ■

SISTEMAS À CÉLULA A COMBUSTÍVEL

Os dois sistemas de célula a combustivel HY80 mostrados na figura abaixo consistem dos seguintes sub-módulos:

- Stack de Célula a Combustivel
 Sistema de Célula a Combustivel
 Unidade de Distribuição de Potência
 Unidade de Controle
 Unidade de Monitoramento e Interface com o Stack
- 6. Bomba de Arrefecimento de Alta Voltagem

13/7/2009 15

Inclination in enviromental chamber

Vibration test in operation

Electromagnetic compatibility test

Teste do sistema de célula a combustivel na câmara climática com inclinação.

Fuel Cell System Test in Climate Chamber with incline.

Technical data		ZEBRA® Battery						
туре	Z37-31	Z37-310-ML3C-64 Z37-620-ML3C-32 Z37-310-ML3P-76 Z37-620-ML3P-38						
Capacity Rated Energy	<i>unit</i> Ah kWh	64 19.8	32 19.8	76 23.5	38 23.5			
Open circuit voltage 0 - 15% DOD Max. regen. voltage Min. op. voltage Max. discharge current Cell Type / N° of cells Weight with BMI Specific energy without BMI Energy density without BMI Energy 2 h discharge Peak power 2/3 OC/ 205 2355 C	V V A Wh/kg Wh/l kWh kW	310 372 206 224 ML3(2 3 1 36 pc	620 744 412 112 C / 240 07 96 56 7.8 DD 80%	310 372 206 224 ML3F 20 11 18 2 36 DO	620 744 412 112 7 3 3 6 1 D 70%			
Specific power Power density Ambient temperature Thermal loss at 270°C internal temperature Cooling Heating time Periphery	W/kg W/I °C W h	a 174 284 -40 to +50 < 120 air 24 h at 230 VAC BMI, Fan						
ZEBRA® charger recomme	ended			ZEB	RA ⁴ Cell			
		Γ		•	-			
-			900		529			
Care a		1	Туре 237		201			
	2/2							

System Specification of Energy Storage System

The energy storage system for the bus consists of 3 NaNiCl batteries, also called ZEBRA battery, which are integrated into the Electric Fuel Cell Hybrid Bus System. The batteries are supplied from MES-Dea a Swiss company. The batteries in the Fuel Cell Hybrid System have to fulfil the following functions:

Assist Fuel Cell Systems to meet instantaneous power requirements.

Store regenerative braking energy

Reduce Fuel Cell System transient operation

Improve overall power train efficiency

Battery System Design (Specification)

The ZEBRA battery is a high energy battery, with 3 ZEBRA Z37 modules providing 108 kW of peak power.

Automation and Drives

Component overview (WP 3.1.2)

Large Drives Traction

7 & 8 Phase Inverter 9003.02/03 or 9004 Current: 170 A cont. / 300 A peak Power: 2 x 120 kVA cont. / 175 kVA peak. 1 / 2 x 60 kW Chopper Phases

DICO (Gateway / Hybrid & Drive Control)

Cable-set

Weight without cable 760kg A&D LD T O7 / hck / 28.10.04

UNDP Pres 041108.ppt 3 / 7

Reactor circuit Current: 2x120 A cont. / 300 A peak Power: 2 x 120 kVA cont. / 175 kVA peak.

Drive Motor 1PV5135/5138 Power: 67/85 kW cont.

Auxiliary Motor 1PV5131 Power: 25kW cont. / 65 Nm cont.

Fuel Cell System Manufacturing and Integration

Fuel Cell System Integration into Bus @ Tutto Facilities

Verfasser | Datei, Version, Revision

Shipping to Brasil

Build and test of

FCS wiring/electronics

Fuel Cell System

13/7/2009

13/7/2009

Resume of Phase I

- Nucellsys was impressed to see how professional the Team worked together.
- The progress of Integration and Testing was very good and successful
- The local partner Tutto has now a very good experience in fuel cell hybrid technology.

